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Simple graphical representations have been found which have led to the discovery of new geometrical 
relations between the angle settings, Z0, co, Z and ~P-~P0, of a four-circle single-crystal diffractometer, and the 
azimuthal angle, v/, of the diffraction vector. The new geometric relations greatly simplify the derivation of 
the trigonometric equations which relate the angle settings with the rotation around the diffraction vector. 
One of these equations, tan Z = tan Z0/cos (~0- tp0), is given here for the first time. The others are similar in 
form to those derived previously with matrix methods. 

Introduction 

What are the relations between the angle settings, o9, Z, and 
~p and the azimuthal angle ~, (psi) on a conventional four- 
circle single-crystal diffractometer? This question is often 
asked in other more practical ways, such as: how to cal- 
culate the angle settings for a given value of ~, or how 
(what angles to use) to locate a particular reflection at the 
angle settings other than the bisecting position often used 
for data collection. Equations for relating the new angle 
settings Z, 09 and <p to the original angle settings,t Zo, 090 
and tp0, have been reported by several authors. For example, 
Santoro & Zocchi (1964) related the setting angles in terms 
of the Cartesian coordinates of the reciprocal lattice points 
and the length of the reciprocal vector. Arndt & Willis 
(1966) expressed these relations in terms of an offset angle 
e0 and the reciprocal lattice coordinates ~, ( and r. Busing & 
Levy (1967) pointed out that the angle settings can be 
extracted from an orthogonal matrix R which is the product 
of four orientation matrices W, f~0, X0 and ~0. The angle 
settings were then expressed in terms of the elements of 
the matrix R. Hamilton (1974), on the other hand, used a 
treatment similar to that of Busing & Levy (1967) and led 
to the simpler relations expressing Z, co, tp, and q/ in terms 
of the diffractometer angles. However, all these relations 
either were expressed in terms of variables other than the 
diffractometer angle settings or they were derived from a 
solution of elegant but complicated equations of crystal 
orientation. There was no simple graphical representation 
which allowed one to visualize instantly the geometrical 
relations between the angle settings and the azimuthal 
angle. We report here such a representation and the new 
geometrical relations, as well as the derivation of the equa- 
tions relating the various angles. A detailed description 
for deriving the representation is given because it is useful 
in teaching diffractometry on the one hand, and because 
it provides a clear picture of the relations between the 
various angles on the other. 

Geometrical relations 

We begin by considering Fig. 1. The Cartesian coordinate 
system shown there has been chosen such that the X Y  and 
the diffraction planes are parallel and such that the X axis 
points in the direction of the diffraction vector. In other 
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5" These settings are defined to be the 2" and tp angles at 
which the crystal diffracts for co = COo = 0 and for ~ = 0. 

words, the Bragg condition may be satisfied if a particular 
reciprocal lattice point is moved onto the X axis. Now 
assume that when co=0, Z = 0  and ~=~0 we are able to 
bring this particular reciprocal lattice point to location A. 
Clearly, there are an infinite number of ways to move the 
lattice point from A into the diffraction position D, which 
is on the X axis. A special way to achieve this is to move 
along AD, or a more general route is to follow AB-BC-CD. 
The former involves a single rotation of the crystal about 
the Z axis while the latter consists of rotations about the 
¢P, Z and 09 axes. Although the final position of the reci- 
procal lattice point is the same in both cases, the latter 
route will produce a rotation of the reciprocal lattice about 
OD, the diffraction vector, as compared to the orientation 
of the lattice after it has traversed the former path. Since 
AD, AB, BC and CD are the paths of a reciprocal lattice 
point when rotations about diffractometer axes are made, 
relations must exist between their lengths and the angles of 
rotations, Z0, co, Z and A~, which is tp-~p0. Indeed, these 
relations can be represented in Figs. 1 and 2(a) by the four 
angles around the apex, O, of a distorted rectangular 
pyramid, O-A'BC'D'. The points A', B, C'  and D' are the 
projections of A, B, C and D on the plane that is parallel 
to the YZ plane and that passes through point B. The 
rotation around the diffraction vector, i.e. the azimuthal 
angle, ~,,* can be represented by the angle between BC" 
and BE" [Figs. 1 and 2(b)] which are the tangents of the 
arcs BC and BE respectively at B. We now explain these 
relations. 

(A) The diffractometer setting angles ~P0, tp, Z0, Z, COo and o9 
From Fig. 1, if the reciprocal lattice point of interest is 

moved from A to D following the former route mentioned 
earlier, i.e. AD, then Z0 = / _ A O D ,  ¢=~00 and o9=o90=0. 
If the latter route is used, i.e. AB-BC-CD, then Atp=tp 
-~po = / _ D O E = / _ D ' O C ' ,  Z0 = / A O D =  /_BOC', Z= 
/_BO'C=/_A'OD', o90=0 and co=/_DOC.  But right 
triangles, A'OB and D"OC are congruent ('." CD"=BA', 
OC=OB, and /_OA'B=/_OD"C=zr/2). Therefore 09= 
/_DOC= /_A'OB. 

(B) The azimuthal angle, ~, 
Define a unit vector, u, in reciprocal space pointing in 

the same direction as the tangent of the arc AD at A (Fig. 
1) and consider the two different routes mentioned earlier 
for moving a particular lattice point from A to D. We then 
observe what happens to the orientation of this newly 
defined vector u when it reaches D. Obviously after follow- 

* ~'0 = 0 is defined as the value of v/at o9= COo = 0. 
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ing the first route (along AD, about Z) n will be aligned with 
the tangent of arc AD at D. Along the second route, n 
becomes aligned with BE" ,  however, after the particular 
reciprocal lattice point is first moved from A to B, as well 
as at the completion of the route (B to C to D), n will no 
longer be in the direction of the tangent of AD at D. 
Instead, another unit vector in reciprocal space, say v, 
which points in the direction of BC",  when the lattice 
point of interest is at B, will be tangent to AD at D. There- 
fore, the angle of rotation due to the difference in route 
is just that between u and v or equivalently between B C "  
and BE". Accordingly, ~ can be represented by /_ C"BE".  

Calculation o f  angles 

If we assume that OB= 1, then from Fig. 2(a) it is evident 
that 

sin 09=A'B/OB=cos Zo sin A~o, (1) 

cos Z = OD'/OA" = cos Z0 cos A~/cos o9. (2) 

Equation (1) is similar to equation (12) of Hamil ton (1974) 
except that the sign convention for co is different. The posi- 
tive directions of the angles are indicated by the curved 
arrows in Fig. 1. Hamil ton 's  sign convention for 09 is op- 
posite in sense to the one assigned for our Picker diffracto- 
meter. Equation (2), however, is the same as Hamil ton 's  
equation (13). An alternative simpler expression for Z, 
which may have certain conceptual advantages, but has 
not been previously mentioned, indicates that Z can be 
independent of 09, 

tan Z = A'D' /OD'= tan Z0/cos Atp. (2') 

Therefore both 09 and Z can be expressed in terms of Z0 
and A~0. 

The angle of rotation, ~, about the diffraction vector 
has been pointed out in the foregoing paragraph to be the 
angle between B C "  and B E "  [Figs. 1 and 2(b)]. It can be 
shown (see Appendix) that / B E " C " = n / 2 ,  where E "  
and C "  are the intercepts of B C "  and B E "  with the X Y  
plane. From Fig. 2(b), we have 

BC" = B E "  cos Z0 = BC'" cos gt cos Z0 • 
Also, 

BC" = BC'" cos Z.  
Therefore, 

cos Z = cos ~ cos Zo • (3) 

Equations (1), (2'), and (3) are all that is necessary in 
relating the various angles. By knowing any two of the five 
variables, ,~o, Z, 09, A~0 and gt, the other three can be cal- 
culated. For example, if a rotat ion of ~ from 9'0 is needed 
when Z0 is known, then X can be calculated from (3), A~0 
can then be evaluated by substituting Z0 and Z into (29, 
and finally co can be calculated by entering Zo and A~0 into 
(1). The new angle settings which will rotate the diffraction 
vector by an amount  of ~ will then be 09, Z and ¢0+A~0. 

APPENDIX 

One of the ways to show that /_BE"C"=zt /2  is as 
follows: from Fig. 2(b), 

C'O = BC'/ tan Zo 
C'O" = BC'/ tan Z 

C'E'" = BC" tan X0 
C ' C " =  BC" tan ,~. 
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Fig. ]. Coordinate system and diffractometer angles. The ~, 
and Z axes shown here are at Z = 0 and co = 0. The positive 
directions of the angles of rotation are indicated by the 
curved arrows. 
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Fig. 2. Parts of Fig. 1 that have been excised and isolated for 

clarity. 

Thus, 
c'o/c'o'= C'C"/C'E" 

and 
/_ C ' E " C "  =/_  C'O'O = re/2, 

i.e. 
C " E " ± C ' E "  . 

Since 
AC'E"B_I_AE'E"C" 

therefore 
BE"_I_E'C" , 

that is, 
/ B E "  C"  = 7r/2. 
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